QCR:
--------------------------------------------------------------------------
Creates a regulator from a state space system.
Create a regulator of the form
u = -Kx minimizing the cost functional
J = †{(1/2)[u'ru + x'qx] + u'nx + x'nu}dt.
Given the constraint:
.
x = ax + bu
Since version 1.
--------------------------------------------------------------------------
Form:
[k, sinf] = QCR( a, b, q, r, n )
--------------------------------------------------------------------------
------
Inputs
------
a Plant matrix (N,N)
b Input matrix (N,M)
q State cost matrix (N,N)
r Input cost matrix (M,M)
n State/input cost cross-coupling matrix (N,M)
-------
Outputs
-------
k Optimal gain
sinf Solution to the matrix Ricatti equation
--------------------------------------------------------------------------
References: Franklin, G.F., J.D. Powell, M.L. Workman, Digital Control
of Dynamic Systems, 2nd Edition, Addison-Wesley, 1990,
pp. 435-438.
--------------------------------------------------------------------------
Children:
Common: Control/Riccati