UDKalmanFilter:
--------------------------------------------------------------------------
Implements a Kalman filter using UD factorization.
First call
d = UDKalmanFilter( 'p to ud', p )
You need to add r, q, h, and x to d.
Then call
loop:
d = UDKalmanFilter( 'incorporate measurement', d, z )
d = UDKalmanFilter( 'propagate', d )
end
Since version 9.
--------------------------------------------------------------------------
Form:
d = UDKalmanFilter( action, d, z )
--------------------------------------------------------------------------
------
Inputs
------
action (1,:) Action to perform
d (1,1) Data structure
.u Upper triangular portion of the covariance matrix
.r Measurement noise scalar
.q State noise matrix
.h Measurement equation
.x State
.k Gain (computed)
z (n,1) Measurement(s)
-------
Outputs
-------
y (:) Depends on the action
--------------------------------------------------------------------------
References: Bierman, G. J. (1977) Factorization Methods for Discrete
Sequential Estimation. Academic Press.
--------------------------------------------------------------------------