BisectionZero:
--------------------------------------------------------------------------
Use bisection method to find the zero crossing of a function.
The limits are evaluated before the algorithm begins. If both values
either less than or greater than zero, the function returns an
appropriate message and n will be 0.
Since version 10.
--------------------------------------------------------------------------
Form:
[x,n] = BisectionZero( f, x0, xLim, xTol, nmax )
--------------------------------------------------------------------------
------
Inputs
------
f (1,1) Function handle
x0 (1,1) Initial guess for x
xLim (1,2) Limits for x: [min,max]
xTol (1,1) Tolerance for exit
nmax (1,1) Maximum iterations
-------
Outputs
-------
x (1,1) Value of x for f(x) = 0
n (1,1) Number of iterations (number of function evaluations)
msg (1,:) Message if boundary failure
--------------------------------------------------------------------------