JacobianODE:
--------------------------------------------------------------------------
This function computes the Jacobian matrix for a right hand-side.
The central difference approximation good to O(h^2) is used.
For any function f(x,t) it will compute the f0 and a matrices where
dx/dt = ax + f0.
f(x,t) ~= f(xOP,tOP) + a(xOP,tOP) x + ...
funFcn is input as a character string 'xxxxx' and must be of the form
xdot = xxxxx ( t, x, flag, d )
which is the same form used in ode113.
--------------------------------------------------------------------------
Form:
[a, fOP] = JacobianODE( funFcn, tOP, xOP, d )
--------------------------------------------------------------------------
------
Inputs
------
funFcn (1,:) T'function name'
tOP (1,1) Time
xOP (n,1) State at the operating point
d Optional data structure
-------
Outputs
-------
a (n,n) Jacobian matrix of first partials
fOP (n,1) f(xOP,tOP) at the operating point
--------------------------------------------------------------------------