BHinge:
--------------------------------------------------------------------------
Compute a transformation matrix from a bHinge data structure.
There are four possiblities:
1) You can just input a transformation matrix by entering only the b field.
2) You can input a quaternion by just entering the q field.
3) You can input an angle and axis of rotation (1=x,2=y,3=z).
If no axis is specified, the rotation will be about the positive z-axis.
4) If you enter the angle field and the b field, the output transformation
matrix will be the total rotation first through the angle about
the specified axis followed by rotation through the initial b matrix.
If no axis is specified, the rotation will be about the positive z-axis.
--------------------------------------------------------------------------
Form:
b = BHinge( bHinge )
--------------------------------------------------------------------------
------
Inputs
------
bHinge.b (3,3) Transformation matrix
.q (4,1) Quaternion
.angle (1,1) Angle of rotation (radians)
.axis (1,1) Axis of rotation 1=x, 2=y, 3=z (default)
Positive integer means transform from
unrotated to rotated, negative means reverse
or
(3,1) Axis of rotation - see AUToQ
-------
Outputs
-------
b (3,3) Rotation matrix
--------------------------------------------------------------------------
Children:
Common: Coord/AU2Q
Common: Coord/Q2Mat
Common: General/IsValidField