Path: Common/Control

% Use eigevector assignment to design an estimator. 
   Complex lambdas must be in pairs. Their corresponding eigenvectors 
   must also be complex. 

   The design matrix, d.
   One column per state.  Each row relates vD to the
   plant matrix. For example, rows 7 and 8 relate column 3 in vD to
   the plant. In this case vD(1,3) relates to state 2 and vD(2,4)
   relates to state 3. vD need not have as many columns as states.

   rD gives the rows in D per eigenvalue	 
   Each column is for one eigenvalue
   i.e. column one means that the first three rows of  D relat
   to eigenvalue 1

   When you create statespace it should be:

   g = statespace( a, [], c );

   [k, v] = EVAssgnE( g, lambda, vD, d, rD )

   g               (:)      Statespace system
   lambda          (n)      Desired eigenvalues
   vD              (:,n)    Desired eigenvectors
   d               (:,n)    Design matrix
   rD              (n)      Rows in d per eigenvalue

   k                      Gain matrix
   v                      Achieved eigenvectors



Common: Classes/@statespace/and.m
Common: Classes/@statespace/close.m
Common: Classes/@statespace/connect.m
Common: Classes/@statespace/eig.m
Common: Classes/@statespace/get.m
Common: Classes/@statespace/getabcd.m
Common: Classes/@statespace/getsub.m
Common: Classes/@statespace/isempty.m
Common: Classes/@statespace/mtimes.m
Common: Classes/@statespace/plus.m
Common: Classes/@statespace/series.m
Common: Classes/@statespace/set.m
Common: Classes/@statespace/statespace.m
Common: Control/EVAssgnC

Back to the Common Module page