Path: Common/Graphics
% Finds the vector giving the intersection of a plane and a sphere. The normal is n = ai + bj + ck The equation of the plane is a(x-x1) + b(y - y1) + c(z - z1) = 0 where [x1;y1;z1] is a point in the plane. For example, the xy-plane is z = 0 which is generated by a = 0, b = 0, c = 1 and [x1;y1;z1] = [dont care;dont care;0]. If no input arguments are entered it will generate a random plane. If no output arguments are specified it will plot the intersection. -------------------------------------------------------------------------- Form: v = IntersectPlaneAndSphere( r, plane, n ) -------------------------------------------------------------------------- ------ Inputs ------ r (1,1) Radius of sphere plane (1,1) Data structure for plane .n (3,1) Normal .x (3,1) Point in the plane n (1,1) Half the number of points on the equation of the intersection ellipse. The default is 50. ------- Outputs ------- v (:) Data structure .x (3,n) Coordinates of the intersection .intersect (1,1) 1 if the plane intersects the sphere --------------------------------------------------------------------------
Common: Graphics/Axis3D Common: Graphics/NewFig Common: Graphics/XLabelS Common: Graphics/YLabelS Common: Graphics/ZLabelS Common: Quaternion/Q2Mat Common: Quaternion/U2Q Math: Linear/Unit
Back to the Common Module page