Path: Common/Estimation
-------------------------------------------------------------------------- Implements a Kalman filter using UD factorization. First call d = UDKalmanFilter( 'p to ud', p ) You need to add r, q, h, and x to d. Then call loop: d = UDKalmanFilter( 'incorporate measurement', d, z ) d = UDKalmanFilter( 'propagate', d ) end Since version 9. -------------------------------------------------------------------------- Form: d = UDKalmanFilter( action, d, z ) -------------------------------------------------------------------------- ------ Inputs ------ action (1,:) Action to perform d (1,1) Data structure .u Upper triangular portion of the covariance matrix .r Measurement noise scalar .q State noise matrix .h Measurement equation .x State .k Gain (computed) z (n,1) Measurement(s) ------- Outputs ------- y (:) Depends on the action -------------------------------------------------------------------------- References: Bierman, G. J. (1977) Factorization Methods for Discrete Sequential Estimation. Academic Press. --------------------------------------------------------------------------
Back to the Common Module page