Path: Common/Estimation
-------------------------------------------------------------------------- Implement an Unscented Kalman Filter in UD (upper diagonal) form. The filter uses numerical integration to propagate the state. The filter propagates sigma points, points computed from the state plus a function of the covariance matrix. For each state there are two sigma states. The filter appends internal data to the datastructure To initialize call d = UKUDF( 'initialize', d ); To update d = UKUDF( 'update', d, y ); d.x gives the current estimated state and d.pXX the state covariance. The measurement function is of the form meas = MeasFun( x, dMeasFun ); The state function is of the form xDot = StateFun( x, t, dStateFun ); Since version 9. -------------------------------------------------------------------------- Form: d = UKUDF( action, d, y ) -------------------------------------------------------------------------- ------ Inputs ------ action (1,:) 'initialize' or 'update' d (1,1) UKF data structure .rHSFun (1,:) Name of RHS function .rHSFunData (1,1) RHS function data structure .measFun (1,:) Name of measurement function .measFunData (1,1) Measurement function data .x (n,1) Initial state vector .p (n,n) Covariance matrix for x .dY (1,1) Number of measurements .L (1,1) Number of states .rP (n,n) Process noise covariance .rM (n,n) Measurement noise covariance .alpha (1,1) Scaling 1e-4 <= alpha <= 1 .kappa (1,1) Secondary scaling usually 0 .beta (1,1) Prior knowledge of distribution = 2 for Gaussian distributed noise .dT (1,1) Time step .t (1,1) Time y (m,1) Measurement vector ------- Outputs ------- d (1,1) UKF data structure with the following appended .L (1,1) Number of states .n (1,1) Twice the number of states .y (m,1) Measurements based on the states .xA {n} Sigma points -------------------------------------------------------------------------- References: Voss, H. U., Timmer, J., Kurths, J., "Nonlinear Dynamical System Identification from Uncertain and Indirect Measurements," International Journal of Bifurcation and Chaos, Vol. 14, No. 6, 2005, pp. 1905-1933. Van der Merwe, R. and Wan, E., "The Square-Root Unscented Kalman Filter for State and Parameter Estimation". --------------------------------------------------------------------------
Math: Integration/RK4
Back to the Common Module page