CollisionMonteCarlo:

--------------------------------------------------------------------------
  Perform a Monte-Carlo analysis of a relative orbit dynamics simulation
  by applying random noise to the initial conditions.
  Any collisions, defines as separations within the physical dimenstion of  
  the spacecraft, are counted and used to create a "true" probability.

   Since version 7.
--------------------------------------------------------------------------
  Form:
  [prob,dMin,tMin,drH] = CollisionMonteCarlo( d, y0, aC, t, M )
--------------------------------------------------------------------------

  -------
  Inputs:
  -------
  d       (:)      Data structure, see CollisionMonAlg
  y0     (6,1)     Initial relative state                       [km, km/s]
  aC     (3,N)     [x;y;z] acceleration over N time intervals   [km/sec^2]
  t      (1,:)     Propagated time vector
  M      (1,:)     Osculating mean anomaly

 --------
 Outputs:
 --------

--------------------------------------------------------------------------

Children:

Common: Control/C2DZOH
Common: Graphics/NewFig
Common: Graphics/Plot2D
FormationFlying: EccDynamics/FFEccLinOrb
FormationFlying: Transformation/DeltaEl2Alfriend
FormationFlying: Transformation/DeltaElem2Hills
FormationFlying: Transformation/FFEccHills2DeltaElem
Math: Linear/Mag
Math: Trigonometry/UnwrapPhase
Math: Trigonometry/WrapPhase
Orbit: OrbitCoord/El2Alfriend
Orbit: OrbitMechanics/GVEDynamics
OrbitMiniToolbox: Support/M2Nu