CollisionMonteCarlo:
--------------------------------------------------------------------------
Perform a Monte-Carlo analysis of a relative orbit dynamics simulation
by applying random noise to the initial conditions.
Any collisions, defines as separations within the physical dimenstion of
the spacecraft, are counted and used to create a "true" probability.
Since version 7.
--------------------------------------------------------------------------
Form:
[prob,dMin,tMin,drH] = CollisionMonteCarlo( d, y0, aC, t, M )
--------------------------------------------------------------------------
-------
Inputs:
-------
d (:) Data structure, see CollisionMonAlg
y0 (6,1) Initial relative state [km, km/s]
aC (3,N) [x;y;z] acceleration over N time intervals [km/sec^2]
t (1,:) Propagated time vector
M (1,:) Osculating mean anomaly
--------
Outputs:
--------
--------------------------------------------------------------------------
Children:
Common: Control/C2DZOH
Common: Graphics/NewFig
Common: Graphics/Plot2D
FormationFlying: EccDynamics/FFEccLinOrb
FormationFlying: Transformation/DeltaEl2Alfriend
FormationFlying: Transformation/DeltaElem2Hills
FormationFlying: Transformation/FFEccHills2DeltaElem
Math: Linear/Mag
Math: Trigonometry/UnwrapPhase
Math: Trigonometry/WrapPhase
Orbit: OrbitCoord/El2Alfriend
Orbit: OrbitMechanics/GVEDynamics
OrbitMiniToolbox: Support/M2Nu