FFEccDMatPeriodic:
--------------------------------------------------------------------------
Given an initial Hills state (xH0) at a particular true anomaly (nu0)
of an eccentric orbit (e), compute the in-plane velocities (dx and dy)
required for periodic motion.
Use any of the following methods:
1) symmetric - Motion is symmetric in-track about the origin
2) fuel optimized - Use LP to find minimum of abs(dx) + abs(dy)
3) velocity constraint - Leave dx = dx0, solve for new dy
Since version 7.
--------------------------------------------------------------------------
Form:
[D, dx, dy] = FFEccDMatPeriodic( xH0, nu0, e, method );
--------------------------------------------------------------------------
------
Inputs
------
xH0 (6,1) Initial state in Hills frame
nu0 (1) True anomaly (at initial state) [rad]
e (1) Eccentricity
method (1) Indicate which method to use
1 - symmetric
2 - fuel optimization
3 - velocity constraint
-------
Outputs
-------
D (6,1) Vector of integration constants
dx (1) Scaled radial velocity required for periodic motion
dy (1) Scaled along-track velocity required for periodic motion
--------------------------------------------------------------------------
References: Inalhan, Tillerson, How, "Relative Dynamics and Control of
Spacecraft Formations in Eccentric Orbits", Journal of Guidance,
Control & Dynamics, Vol.25, No.1, Jan-Feb 2002.
--------------------------------------------------------------------------
Copyright 2004 Princeton Satellite Systems, Inc.
All rights reserved.
--------------------------------------------------------------------------
Children:
FormationFlying: EccDynamics/FFEccDH
FormationFlying: EccDynamics/FFEccRMat