LPCircularTimeWeight:
--------------------------------------------------------------------------
Determine the target state on the desired trajectory that gives the minimum
time-weighted cost.
Use the LPCircular control algorithm to compute the delta-v's associated with
maneuvering from an initial state (x0) to a series of target states, which
lie on a trajectory defined by the geometric goals (g). The target state
associated with the minimum time-weighted cost is returned.
Since version 7.
--------------------------------------------------------------------------
Form:
[xHF,nOrbMvr] = LPCircularTimeWeight( el0, xH0, goals, window, nSPO );
--------------------------------------------------------------------------
------
Inputs
------
el0 (1) Initial orbital element set [a,i,W,w,e,M]
xH0 (6,1) Initial state in Hill's frame
goals (.) Geometric goals data structure
window (.) Maneuver time window data structure, containing:
- nOrbMin Minimum number of orbits
- nOrbMax Maximum number of orbits
- nManeuvers Number of maneuvers to search over
- timeWeightExp Time-weighting exponent
nSPO (1) Number of samples to use for control vector
(per orbit of maneuver duration)
-------
Outputs
-------
xHF (6,1) Target Hills-frame state (at maneuver completion)
nOrbMvr (1) Chosen maneuver duration (in orbits)
--------------------------------------------------------------------------
Children:
FormationFlying: LP/LPCircular
FormationFlying: Transformation/Goals2Hills
FormationFlying: Utility/MeanAnom2TrueLat
FormationFlying: Utility/NOrbVector
FormationFlying: Visual/CostVis
Math: Linear/Mag
Orbit: OrbitCoord/El2Alfriend
SC: BasicOrbit/OrbRate