Path: Math/Analysis
% This function computes the Jacobian matrix for a right hand-side. The central difference approximation good to O(h^2) is used. For any function f(x,t) it will compute the f0 and a matrices. f(x,t) ~= f(xOP,tOP) + a(xOP,tOP) x + ... funFcn is input as a character string 'xxxxx' and must be of the form xdot = xxxxx ( x, t, {p1,p2,p3,p4,p5,p6,p7,p8,p9,p10}) which is the same form used in RK2 and RK4. tOP is optional. If not needed pass []. -------------------------------------------------------------------------- Form: [a, fOP] = Jacobian( funFcn, xOP, tOP, varargin ) -------------------------------------------------------------------------- ------ Inputs ------ funFcn 'function name' or handle xOP (n,1) State at the operating point tOP Time varargin Optional arguments ------- Outputs ------- a (n,n) Jacobian matrix of first partials fOP (n,1) f(xOP,tOP) at the operating point --------------------------------------------------------------------------
Back to the Math Module page