Path: Math/Analysis
% This function computes the Jacobian matrix for a right hand-side. The central difference approximation good to O(h^2) is used. For any function f(x,t) it will compute the f0 and a matrices where dx/dt = ax + f0. f(x,t) ~= f(xOP,tOP) + a(xOP,tOP) x + ... funFcn is input as a character string 'xxxxx' and must be of the form xdot = xxxxx ( t, x, flag, d ) which is the same form used in ode113. -------------------------------------------------------------------------- Form: [a, fOP] = JacobianODE( funFcn, tOP, xOP, d ) -------------------------------------------------------------------------- ------ Inputs ------ funFcn (1,:) T'function name' tOP (1,1) Time xOP (n,1) State at the operating point d Optional data structure ------- Outputs ------- a (n,n) Jacobian matrix of first partials fOP (n,1) f(xOP,tOP) at the operating point --------------------------------------------------------------------------
Back to the Math Module page