Path: Math/Analysis
% Solve an optimization problem with Newton's method. Requires the objective value, gradient vector, and hessian matrix to be defined with function handles. Since version 8. -------------------------------------------------------------------------- Form: [xopt,nSteps,cpuTime,iterate,objValue] = ... NewtonsMethod(f,grad,hess,x,stopData,stepSizeData); See also: Armijo.m, NLEqSolver.m -------------------------------------------------------------------------- ------ Inputs ------ f @(x) Function handle for cost function grad @(x) Function handle for gradient of cost function hess @(x) Function handle for hessian of cost function x (n,1) Initial state stopData . Data structure with fields: .fun Function handle with arguments "f(x), grad(x)" returning true if stop conditions met, else false. .maxIter Maximum number of iterations. .gTol Gradient norm tolerance. Stop when norm of gradient vector is below this threshold. stepSizeData .rule Name of the stepsize rule. 3 choices: - Constant (define s) - Armijo (define s, sigma, beta) .s Scalar stepsize. .sigma Scale factor for Armijo rule .beta Scale factor for Armijo rule ------- Outputs ------- xopt (n,1) Optimal solution nSteps (1,1) Number of iteration steps computed cpuTime (1,1) Total time to execute, in seconds iterate (1,nSteps) History of iterate objValue (1,nSteps) History of objective value --------------------------------------------------------------------------
Math: Analysis/Armijo
Back to the Math Module page