AGravityCStruct:

--------------------------------------------------------------------------
   Compute the gravitational acceleration in cartesian coordinates. 
   Acceleration vectors are a [ aX;aY;aZ ].
   The GEM-T1 coefficients should be unnormalized.

   [s, c, j, mu, a] = LoadGEM( 1 )

   for k = 1:kMax
     [aG, aS, aZ, aT] = AGravityCStruct( r, d );
   end

   See also AGravity.

   Since version 8.
--------------------------------------------------------------------------
   Form:
   [aG, aS, aZ, aT] = AGravityCStruct( r, d )
--------------------------------------------------------------------------

   ------
   Inputs
   ------
   r           (3,:)    Position vector
   d           (1,1)    Gravity model structure
                        .nN          (1,1)    Highest zonal harmonic (m = 0) (empty gives the max #) 
                        .nM          (1,1)    Highest sectorial and tesseral harmonic 
                        (empty gives the max #) 
                        .s           (:,:)    S terms
                        .c           (:,:)    C terms
                        .j             (:)    m = 0 terms
                        .mu          (1,1)    Spherical gravitational potential
                        .a           (1,1)    Planet radius

   -------
   Outputs
   -------
   aG           (3,:)   Total gravitational acceleration km/sec^2
   aS           (3,:)   Spherical term                   km/sec^2
   aZ           (3,:)   Zonal term                       km/sec^2
   aT           (3,:)   Tesseral term                    km/sec^2

--------------------------------------------------------------------------
	 Reference: Bond, V. R. and M. C. Allman (1996.) Modern Astrodynamics.
               Princeton. pp. 212-213.
--------------------------------------------------------------------------

Children:

Common: Graphics/Plot2D
Orbit: GravityModels/LoadGEM