AGravityCStruct:
--------------------------------------------------------------------------
Compute the gravitational acceleration in cartesian coordinates.
Acceleration vectors are a [ aX;aY;aZ ].
The GEM-T1 coefficients should be unnormalized.
[s, c, j, mu, a] = LoadGEM( 1 )
for k = 1:kMax
[aG, aS, aZ, aT] = AGravityCStruct( r, d );
end
See also AGravity.
Since version 8.
--------------------------------------------------------------------------
Form:
[aG, aS, aZ, aT] = AGravityCStruct( r, d )
--------------------------------------------------------------------------
------
Inputs
------
r (3,:) Position vector
d (1,1) Gravity model structure
.nN (1,1) Highest zonal harmonic (m = 0) (empty gives the max #)
.nM (1,1) Highest sectorial and tesseral harmonic
(empty gives the max #)
.s (:,:) S terms
.c (:,:) C terms
.j (:) m = 0 terms
.mu (1,1) Spherical gravitational potential
.a (1,1) Planet radius
-------
Outputs
-------
aG (3,:) Total gravitational acceleration km/sec^2
aS (3,:) Spherical term km/sec^2
aZ (3,:) Zonal term km/sec^2
aT (3,:) Tesseral term km/sec^2
--------------------------------------------------------------------------
Reference: Bond, V. R. and M. C. Allman (1996.) Modern Astrodynamics.
Princeton. pp. 212-213.
--------------------------------------------------------------------------
Children:
Common: Graphics/Plot2D
Orbit: GravityModels/LoadGEM