## AGravity:

Path: Orbit/OrbitMechanics

```% Compute the gravitational acceleration in spherical coordinates.

Acceleration vectors are a [ a(r), a(lambda), a(theta) ].
The coefficients should be unnormalized.

[s, c, j, mu, a] = LoadGEM( 1 )

for k = 1:kMax
[a, aS, aZ, aT] = AGravity( nZ, nT, r, lambda, theta, s, c, j, mu, a );
end

than

for k = 1:kMax
[a, aS, aZ, aT] = AGravity( nZ, nT, r, lambda, theta );
end

Since version 1.
--------------------------------------------------------------------------
Form:
[aG, aS, aZ, aT] = AGravity( nZ, nT, r, lambda, theta, s, c, j, mu, a )
--------------------------------------------------------------------------

------
Inputs
------
nZ                   Highest zonal harmonic (m = 0) (empty gives the max #)
nT                   Highest sectorial and tesseral harmonic (empty gives the max #)
lambda               Equatorial angle
theta                Angle from pole
s           (:,:)    S terms
c           (:,:)    C terms
j              (:)   m = 0 terms
mu                   Spherical gravitational potential

-------
Outputs
-------
aG           (3,1)   Total gravitational acceleration km/sec^2
aS           (3,1)   Spherical term                   km/sec^2
aZ           (3,1)   Zonal term                       km/sec^2
aT           (3,1)   Tesseral term                    km/sec^2

--------------------------------------------------------------------------
```

## Children:

```Math: Analysis/PDAL
Math: Analysis/SCHarm