Path: Orbit/OrbitMechanics
% Compute the gravitational acceleration in spherical coordinates. Acceleration vectors are a [ a(r), a(lambda), a(theta) ]. The coefficients should be unnormalized. [s, c, j, mu, a] = LoadGEM( 1 ) for k = 1:kMax [a, aS, aZ, aT] = AGravity( nZ, nT, r, lambda, theta, s, c, j, mu, a ); end than for k = 1:kMax [a, aS, aZ, aT] = AGravity( nZ, nT, r, lambda, theta ); end See also AGravityC, PDAL, SCHarm Since version 1. -------------------------------------------------------------------------- Form: [aG, aS, aZ, aT] = AGravity( nZ, nT, r, lambda, theta, s, c, j, mu, a ) -------------------------------------------------------------------------- ------ Inputs ------ nZ Highest zonal harmonic (m = 0) (empty gives the max #) nT Highest sectorial and tesseral harmonic (empty gives the max #) r Radius lambda Equatorial angle theta Angle from pole s (:,:) S terms c (:,:) C terms j (:) m = 0 terms mu Spherical gravitational potential a Earth radius ------- Outputs ------- aG (3,1) Total gravitational acceleration km/sec^2 aS (3,1) Spherical term km/sec^2 aZ (3,1) Zonal term km/sec^2 aT (3,1) Tesseral term km/sec^2 --------------------------------------------------------------------------
Math: Analysis/PDAL Math: Analysis/SCHarm Orbit: GravityModels/LoadGEM
Back to the Orbit Module page