Path: Orbit/OrbitMechanics
% Compute the earth's gravitational potential. r must be a scalar but theta and phi may be arrays. If you want to call this routine multiple times it is faster to do [s, c, j, mu, a] = LoadGEM( 1 ) for k = 1:kMax [u, uS, uZ, uT] = UGravity( nZ, nT, r, lambda, theta, s, c, j, mu, a ); end than for k = 1:kMax [u, uS, uZ, uT] = UGravity( nZ, nT, r, lambda, theta ); end -------------------------------------------------------------------------- Form: [u, uS, uZ, uT] = UGravity( nZ, nT, r, lambda, theta, s, c, j, mu, a ) -------------------------------------------------------------------------- ------ Inputs ------ nZ Highest zonal harmonic (m = 0) nT Highest sectorial and tesseral harmonic r Radius lambda (j) Equatorial angle theta (i) Angle from pole s (36,36) S terms c (36,36) C terms j (36) m = 0 terms mu Spherical gravitational potential a Earth radius ------- Outputs ------- u (i,j) Total gravitational potential uS Spherical term uZ (i) Zonal terms uT (i,j) Tesseral and sectorial terms -------------------------------------------------------------------------- Reference: Seidelmann, P.K, (ed) (1992). Explanatory Supplement to the Astronomical Almanac. University Science Books, Mill Valley, CA. p. 226. --------------------------------------------------------------------------
Common: Graphics/Mesh2 Math: Analysis/PAL Math: Analysis/SCHarm Orbit: GravityModels/LoadGEM
Back to the Orbit Module page