LSQLaunch:
--------------------------------------------------------------------------
Use least squares approach to compute launch conditions.
In order to achieve orbit, the final states are a vRatio of 1 and a
flight path angle of 0.
Since version 1.0
--------------------------------------------------------------------------
Form:
[p0,z] = LSQLaunch( p0G, z, W, d, opts )
--------------------------------------------------------------------------
------
Inputs
------
p0G (2,1) Initial parameters guess. [gamma; scale], where:
gamma: Initial flight path angle
scale: Scale of 3rd stage
zM (2,1) Final states to match. [vRatio; gamma], where:
vRatio: Final velocity over orbital velocity
gamma: Final flight path angle
W (2,2) Diagonal weighting matrix.
d (.) Data structure for launch problem. Fields:
.simFun (:) Name of simulation function
.rocket (.) Launch vehicle data structure (see RocketDatabase)
.direct (1) Flag. Direct (1) or indirect (0) launch
.mPLD (1) Payload mass (kg)
.h0 (1) Launch altitude
.v0 (2) Launch velocity
.dT (1) Desired time step for orbit propagation [sec]
.g (1) Gravitational acceleration (km/s/s)
.Rp (1) Planet radius (km)
.mu (1) Gravitational constant (km^3/s/s)
opts (.) Data structure of options for this algorithm.
.tol (1) Tolerance for size of dp0 (differential corrector)
.maxIter (1) Maximum allowed iterations
.verbose (1) Print out additional information
-------
Outputs
-------
p0 (2,1) Solution for best parameters p0
z (2,1) Final states, [vRatio; gamma]
--------------------------------------------------------------------------
See also LSQLaunchSim, Jacobian
--------------------------------------------------------------------------
Children:
Math: Analysis/Jacobian