
Optical Navigation System
Simulation Guide V1.0

Princeton Satellite Systems
6 Market Street, Suite 926
Plainsboro, NJ 08536
(609) 275-9606

1

Princeton Satellite Systems CONTENTS

Contents

1 Summary 4

2 Simulation Components 4

3 Building from an Installer 5

4 Building from SVN 5

5 Architecture of the Simulation 7

6 APIs 8

7 Demonstration 8
7.1 Introduction . 8
7.2 Simulation Setup File . 14
7.3 Control Deck . 14
7.4 VCI File . 16
7.5 User Operations . 16
7.6 Editing . 16

8 DSimManager 19

9 Simulation Models 19
9.1 Spacecraft Dynamics . 19
9.2 Disturbance Model . 22
9.3 Gravity Model . 24
9.4 Camera Model . 25
9.5 IMU Model . 26
9.6 Ranging Model . 26
9.7 State Sensor Model . 27
9.8 GPS Model . 27
9.9 Intersatellite Link Model . 28
9.10 Radar Model . 28
9.11 Propulsion Model . 29
9.12 Gimbal Model . 29

2

Princeton Satellite Systems LIST OF FIGURES

List of Figures

1-1 Mercury Messenger flyby 9/21/2009 . 4

2-1 Icons . 5

3-1 Installer . 5

3-2 ONS folder . 6

4-1 ONS project . 7

4-2 Building frameworks in Terminal . 8

5-1 User interaction . 9

6-1 SCControl API index page . 10

7-1 VisualCommander simulation start . 11

7-2 Simulation summary page . 12

7-3 Orbit determination with Pluto as a target . 12

7-4 Attitude control maneuver . 13

7-5 Simulation setup file in DSimManager . 14

7-6 Data window in VisualCommander . 17

7-7 Data flow window in VisualCommander . 17

7-8 Editing VisualCommander . 18

8-1 DSimManager . 19

8-2 DSimManager: Components window . 20

8-3 DSimManager: select integrator . 21

8-4 DSimManager: Drag and drop models . 21

9-1 GPS model constellation . 27

9-2 Radar frame of reference . 28

3

Princeton Satellite Systems 2 SIMULATION COMPONENTS

1 Summary

This document gives a brief introduction to running the Optical Navigation System simulation in Visual-
Commander. It provides two test cases that can be used as a template for developing additional simulations:

1. New Horizons Pluto flyby
(a) A spacecraft similar to NewHorizons with ONS with a thruster control system
(b) The spacecraft is within 1 day of Pluto encounter
(c) The ephemeris includes the Earth, Moon, Mars, Jupiter, Saturn, Uranus, Neptune and Pluto

2. Messenger Mercury flyby Figure 1-1
(a) A spacecraft similar to Messenger. The simulation is of the September 2009 flyby of Mercury.
(b) The simulation starts a before the flyby
(c) The ephemeris includes all of the planets out to Saturn

This document explains how to build the simulation and control software from subversion. That section can
be skipped if you are building it from an installer. Also provided with this Users Guide is an HTML version
of the API documentation for all of the software. VisualCommander has a built-in help system accessible
from the help menu.

Figure 1-1. Mercury Messenger flyby 9/21/2009

2 Simulation Components

Table 2-1 on the next page lists the software components provided with this package. Running the complete
simulation requires a computer running Mac OS 10.6+.

The icons for VisualCommander and DSimManager are shown in Figure 2-1 on the following page.

4

Princeton Satellite Systems 4 BUILDING FROM SVN

Table 2-1. Simulation components

Component Description
VisualCommander v3.0 The client/server application for running simulations, interacting with the

simulation and visualizing the simulation. The client portion of VC 3.0
requires Mac OS 10.6+.

DSim The cross-platform simulation engine
Spacecraft Control Library (SCControl) A library of C/C++ classes and functions for many common spacecraft

simulations
Spacecraft Package A library of C++ classes for DSim spacecraft simulations
DSimManager v1.0 An application for building DSim simulations
ControlDeck v2.0 A C++ library for building real-time control systems
DCS An Xcode project that contains all ControlDeck software that imple-

ments the system
APIs Doxygen APIs are provided for ONS, the Spacecraft package and SC-

Control

Figure 2-1. Icons

3 Building from an Installer

The installer is shown in Figure 3-1. Double click on it and it will install VisualCommander. If you see
VisualCommander in the toolbar it is preinstalled.

Figure 3-1. Installer

Some components need to be copied onto the computer. Those are shown in Figure 3-2 on the following
page. These include the Xcode projects and the APIs.

4 Building from SVN

If you have access the the Princeton Satellite Systems Subversion (svn) archive you can build your simula-

5

Princeton Satellite Systems 4 BUILDING FROM SVN

Figure 3-2. ONS folder

tion and control deck from svn. You need to build the following:

1. Frameworks - frameworks consists of many different Xcode projects. You will not normally need to
look at any of these except for ASControl which includes many C++ functions related to dynamics
and control

2. Spacecraft - this contains all the DSim dynamical models

3. ONS - Optical Navigation System ControlDeck. These are all the control and navigation functions

All of the packages are found on the PSS svn server. The following commands will download the required
software

svn co https://svn.psatellite.com/Packages/ONS
svn co https://svn.psatellite.com/Packages/Spacecraft
svn co https://svn.psatellite.com/Packages/CSpice
svn co https://svn.psatellite.com/VisualCommander
svn co https://svn.psatellite.com/Frameworks

The ONS Xcode project is shown in Figure 4-1 on the next page. The window shows the major folders in
the project. It also shows all the libraries needed to build the ONS software.

You need to first build Frameworks. Building frameworks is done using Terminal. An example session is
shown in Figure 4-2 on the following page. The sessions show all of the projects that are built. The first

6

Princeton Satellite Systems 5 ARCHITECTURE OF THE SIMULATION

Figure 4-1. ONS project

command, “make macclean" cleans out all the compiled code. “make macrelease" creates a release version
of each package.

To build an Xcode project double click on the project file, xxx.xcodeproj. Under Build select “Clean
all Targets". Once this is done select “Build"

5 Architecture of the Simulation

Figure 5-1 on page 9 shows how the user interacts with VisualCommander. The user interacts with the
simulation via DSimManager, a self-contained application, and with the ControlDeck, which contains all of
the control and navigation software and its interface with the simulation. The sequence of steps is to

1. Build a simulation using DSimManager

2. Write a ControlDeck. The ControlDeck has a link to the simulation

3. Start VC and connect the ControlDeck to a session

4. Build your interface interactively in VisualCommander

The file types are

1. .vci file - contains the user interface

2. .txt file - contains the control deck

7

Princeton Satellite Systems 7 DEMONSTRATION

Figure 4-2. Building frameworks in Terminal

3. .ds2 file - an xml file that contains the simulation definition

6 APIs

Figure 6-1 on page 10 shows the index page for the SCControl API. All three APIs (Spacecraft, ONS and
SCControl) are in doxygen format. They are provided in 3 folders.

7 Demonstration

7.1 Introduction

This section takes you through a complete simulation of the Optical Navigation System as the New Horizons
spacecraft approaches Pluto. The model has the same thruster layout as the actual New Horizons and its

8

Princeton Satellite Systems 7 DEMONSTRATION

Figure 5-1. User interaction

ControlDeck ds2 file
Simulation Model

DSimManager

VCI File

Session Manager

Text File

XML File

9

Princeton Satellite Systems 7 DEMONSTRATION

Figure 6-1. SCControl API index page

mass properties are similar but there is no attempt to exactly replicate the spacecraft. The situation for the
Messenger simulation is similar, differing only in the details of the orbit and objects tracked.

The spacecraft does the following:

1. Acquires Pluto and Polaris using the telescopes

2. Computes the orbit

3. Computes the attitude

4. Flies past Pluto

To start the simulation find your VisualCommander application and double click on the application icon.
You will need to pull down the file menu and find the file NewHorizons_pluto.ds2. The simulation
will begin to run.

The following figures show a typical simulation. The menu in the upper left hand corner allows you to
change pages so that you can view other aspects of the simulation. You can also use the arrow keys for this
purpose.

10

Princeton Satellite Systems 7 DEMONSTRATION

Figure 7-1. VisualCommander simulation start

After the program starts, ONS automatically begins to align one sensor with Pluto and the other with a polar
star. The attitude estimate just uses the single frame solution and is allowed to converge. The progress of
the alignment can be viewed on the Summary page in the upper right frame, or on the Tracking page where
the attitudes of the cameras can be followed quantitatively.

The program is initialized with the optical sensor input to the orbit determination routine turned off. The
estimator runs, but has no optical input. Once the program is running, the optical sensor input can be
enabled. On the Orbit Determination page enter a 1 in the od_use_camera_command entry field, and click
<Send> to execute the command. With the new input from the camera, the covariance begins to decrease
eventually reaching down to about 25 km2. The orbit determination is accomplished using only the radius of
Pluto and Pluto centroid/star centroid measurements. Figure 7-2 on the next page shows the state vector for
the spacecraft (distance vector, velocity vector) on the left hand side. The large window is a 3D view of the
spacecraft, planets and stars. The display in the upper right hand corner shows the sensor cones. The display
below that shows the solar system and position of the planets and spacecraft. “DSim|simulation:scale" is the
ratio of sim speed to real-time. Anywhere from 1 to 10 should work on most computers.

The progress of New Horizons can be monitored from this page as the spacecraft passes Pluto. In the large
frame one can observe the spacecraft and Pluto in the same view, and watch as Pluto recedes after the
spacecraft passes. In the upper right frame, one can observe the attitude of the sensors as they slew to keep
Pluto in the field of view. It will likely be necessary to adjust the view in the frames by dragging with the
mouse on the image. There are also controls below the frame to change the position and field of view of the
observer.

Figure 7-3 on the following page shows the orbit determination page. When simulation starts, the position
and velocity of the spacecraft are initialized, and the state of the spacecraft thereafter is determined by the
physical model. The orbit determination estimator is running with access to the model, but input from the
camera is turned off. On the orbit determination page one can see the results of the orbit determination
routine in the variables labeled “od_state”, while in the upper right hand corner the state of the craft as
determined by the simulation is shown for comparison. Also shown is the estimator’s covariance matrix.

Along the bottom of the frame are displayed several commands that are used to control the orbit determi-
nation process. In particular, as mentioned above, the camera input can be turned on to add that data to

11

Princeton Satellite Systems 7 DEMONSTRATION

Figure 7-2. Simulation summary page

the estimator. With the camera enabled, one can observe the covariance diagonal decrease as the estimation
improves with the new data. Similarly, a simulated range message from a ground station can be added by
enabling “od_usd_range_command”. message sent from the simulated ground station.

Figure 7-3. Orbit determination with Pluto as a target

You can do an attitude maneuver using the Attitude Control page. Figure 7-4 on the next page shows a roll
maneuver. We waited until the targets were tracked and attitude control converged. To execute an attitude
maneuver, enter the desired final attitude quaternion in the four input fields for

12

Princeton Satellite Systems 7 DEMONSTRATION

acs_q_eci_to_body_command, and click <Send> to load the command, then enter 1 in
acs_control_mode_command followed by <Send> to execute the command. (This last step may not be
necessary.) Tracking maintains alignment on its targets even during the maneuver. Graphical display of
thruster parameters can be viewed on the Attitude Control page, and the changing attitude of the spacecraft
can be followed on the Summary page. Also on the Summary page you can watch the camera sensors realign
to keep their targets in view. One advantage of ONS is that if you start with the cameras on a star field, the
sensors will stay on the star field during the maneuver. Of course if the maneuver is large enough you must
make sure that the tracking targets switch to new targets that can be seen by the sensor.

Figure 7-4. Attitude control maneuver

13

Princeton Satellite Systems 7 DEMONSTRATION

7.2 Simulation Setup File

DSim is the software component that actually executes the simulation. A simulation is constructed and ini-
tialized by means of a XML file, which in the case of the New Horizons simulation is in a file
NewHorizons_pluto.ds2. There is a GUI application, DSimManager, that allows the setup file to
be constructed, viewed, and modified. Modules that model simulation components can be added to the
simulation by drag-and-drop, variables initialized, connected, and tagged for logging, etc. For example, a
spacecraft can be added to the simulation simply by dragging it’s entry in the Components window into the
Object Hierarchy. The file as exposed in DSimManager is shown in Figure 7-5. The Object Hierarchy tab is
open showing the spacecraft modeled in the simulation. The main spacecraft hierarchy is expanded showing
all of the variables associated with the spacecraft model.

Figure 7-5. Simulation setup file in DSimManager

7.3 Control Deck

DSim has no control capability. It simply runs the simulation given the data and parameters it has received.
DSim gets its data from some external source. One source is the Control Deck. The Control Deck can read
data from the simulation, process data, and send commands and data to the simulation. That is, it performs
analysis and control functions. The Control Deck contains a list of all of the modules (instantiated C++
classes) in the control system and creates mappings between DSim variables and variables it uses itself. The
Control Deck for this demonstration is found in the file ONSControl_pluto.txt. The file is shown
below.

Listing 1. Control deck ONSControl_pluto.txt

1 Simulation /Library/Application Support/VisualCommander/Model Libraries/NewHorizons_pluto.ds2
2

3 System NewHorizons
4

5 TimeScale 1
6

7 # Time
8 #--
9 Module NewHorizons ons_timer Timer ONS

14

Princeton Satellite Systems 7 DEMONSTRATION

10

11 # Time
12 #--
13 Module NewHorizons ons_time Time ONS
14

15 # Set up
16 #--
17 Module NewHorizons ons_init_nh_pluto Setup ONS
18 Module NewHorizons ons_unused_variables Unused_Variables ONS
19 Module NewHorizons ons_communications Communications ONS
20

21 # Command processing module. All commands come here
22 #--
23 Module NewHorizons ons_command Command ONS
24

25 # Telemetry module. All telemetry to VC will come from this module
26 #--
27 Module NewHorizons ons_telemetry Telemetry ONS
28

29 # Interfaces
30 #--
31 Module NewHorizons ons_image_processing Image_Processing ONS
32 Module NewHorizons ons_gimbal_processing Gimbal_Processing ONS
33 Module NewHorizons ons_mems_imu_processing IMU_Processing ONS
34 Module NewHorizons ons_mass Mass_Processing ONS
35

36 # Catalogs
37 #--
38 Module NewHorizons ons_star_catalog Star_Catalog ONS
39

40 # Utilities
41 #--
42 Module NewHorizons ons_ephemeris Ephemeris ONS
43 Module NewHorizons ons_thermal_control Thermal ONS
44 Module NewHorizons ons_fault_detection FailureDetection ONS
45 Module NewHorizons ons_co_id Celestial_Object_ID ONS
46

47 # Estimation
48 #--
49 Module NewHorizons ons_od Orbit_Determination ONS
50 Module NewHorizons ons_attitude_determination Attitude_Determination ONS
51

52 # Control and Estimation
53 #--
54 Module NewHorizons ons_attitude_control Attitude_Control ONS
55 Module NewHorizons ons_propulsion Propulsion ONS
56 Module NewHorizons ons_targeting Targeting ONS
57 Module NewHorizons ons_gimbal_control Gimbal_Control ONS
58

59 #--
60 # Inputs
61 #--
62 Variable NewHorizons|Time:julianDate NewHorizons jd_sim
63 Variable NewHorizons:quaternion NewHorizons quaternion_sim
64 Variable NewHorizons:bodyRate NewHorizons omega_sim
65 Variable NewHorizons:position NewHorizons position_sim
66 Variable NewHorizons:velocity NewHorizons velocity_sim
67 Variable NewHorizons:mass NewHorizons mass_sim
68 Variable NewHorizons:center_mass NewHorizons center_of_mass_sim
69 Variable NewHorizons:inertia NewHorizons inertia_sim
70

71 # Ephemeris
72 #--
73 Variable NewHorizons|Gravity:observer NewHorizons observer_sim
74 Variable NewHorizons|Gravity:rotationMatrixBody NewHorizons rotation_matrix_planet_sim
75 Variable NewHorizons|Gravity:planet_index NewHorizons planet_index_sim
76 Variable NewHorizons|Gravity:positionBody NewHorizons position_planet_sim
77 Variable NewHorizons|Gravity:muBody NewHorizons planet_mu_sim

15

Princeton Satellite Systems 7 DEMONSTRATION

78 Variable NewHorizons|Gravity:radiusBody NewHorizons planet_radius_sim
79

80 # Ground Station
81 #--

ONSControl_pluto.txt

The first line gives the path to the simulation file which has the suffix .ds2. The line with “System" defines
the name of a control system, NewHorizons. A simulation may contain a number of control systems.
TimeScale gives the ratio of the control period to real-time.

The lines starting with Module attach processing modules to ControlDeck. Each module is an instantiation
of a C++ class which has the base class cd_control_module. For example

Module NewHorizons ons_ephemeris Ephemeris ONS

Defines a Module for the control system NewHorizons using the ons_ephemeris class. It is given the
name Ephemeris and is from the ONS bundle which is built by ONS.xcodeproj.

The Variable line connects the ControlDeck to the DSim model. For example

Variable NewHorizons|Time:julianDate NewHorizons jd_sim

maps the variable julianDate from the Time module (an instance of the class ons_timer) which is
a child of the NewHorizons model to the ControlDeck variable jd_sim in the System NewHorizons.
Now any module within the ControlDeck can access julianDate via the Control Deck variable jd_sim
with a call to the request_data function.

jd_sim_ref = request_data(NULL, "jd_sim", sd_type_double);

7.4 VCI File

You run the simulation by selecting NewHorizons_Pluto.vci either from VisualCommander or dou-
ble clicking on the file. The window has a number of pages that can be used to send commands to the
simulation and to observe results. You can customize the pages, or add more pages, while the simulation is
running by dragging tools and/or data points onto the window. See the VisualCommander online help for
more information.

7.5 User Operations

Commands that the user can use during the demonstration are shown in Table 7-1 on the next page. The
table shows the pages and the commands available on each page. You can add commands or telemetry to
any page. You can see some of the commands and telemetry in Figure 7-6 on the following page.

7.6 Editing

Figure 7-7 on the next page shows the data flow window which can be used to connect simulation data to
VisualCommander displays. You drag and drop from the menus on the left to the displays on the right.

You can customize any window even while the simulation is running. Figure 7-8 on page 18 shows an
editing sequence. In this case the user is adding the raw data point “jd" to the window. You use the menu on
the right to switch from run to edit mode. The simulation does not stop in edit mode but you can only send
commands in run mode.

16

Princeton Satellite Systems 7 DEMONSTRATION

Table 7-1. Simulation commands

Page Commands
Summary simulation scale - adjust the ratio of sim speed to real time.
Attitude Determination Single Frame Command - select the single frame mode for attitude de-

termination. This uses a pseudo-inverse.
Orbit Determination Reset command, Use range measurement command, use optical mea-

surement command and change orbit center command
Attitude Control Send a quaternion to reorient the spacecraft. You can also change the

attitude maneuver model

Figure 7-6. Data window in VisualCommander

Figure 7-7. Data flow window in VisualCommander

17

Princeton Satellite Systems 7 DEMONSTRATION

Figure 7-8. Editing VisualCommander

18

Princeton Satellite Systems 9 SIMULATION MODELS

8 DSimManager

DSimManager is a an application that allows you to visually assemble dynamical models in the simulation.
The models reside in the Spacecraft Package or any DSim class library that you may have.

When you open DSimManager two windows appear. One says “Untitled" and is the window for building
simulations Figure 8-1. The second is the “Components" window which has your DSim Libraries shown in
Figure 8-2 on the following page. The first step is to click on the Integrators tab and add an integrator. An
integrator integrates the equations of motion, and effects the time evolution of system quantities. Hit the “+"
button and give it a name. There are two built in integrators but you can add your own.

Once you’ve done that you can drag and drop models into the object hierarchy window shown in Figure 8-2
on the next page. Models are in a hierarchy. The gravity model is a child of the spacecraft model. This
facilitates transferring information from one model to the other. Other mechanisms for transferring data
such as targets, networks and outlets also are available, and are exposed in tabbed pages in DSimManager.

Figure 8-1. DSimManager

9 Simulation Models

9.1 Spacecraft Dynamics

The translational dynamics are

ṙ = v (9-1)

19

Princeton Satellite Systems 9 SIMULATION MODELS

Figure 8-2. DSimManager: Components window

20

Princeton Satellite Systems 9 SIMULATION MODELS

Figure 8-3. DSimManager: select integrator

Figure 8-4. DSimManager: Drag and drop models

21

Princeton Satellite Systems 9 SIMULATION MODELS

v̇ = a (9-2)

ṁf = −Ft

ue
(9-3)

The acceleration is
a =

Fs + Fd + Ft

md +mf
+ ac + ap (9-4)

where Fa is the force due to solar pressure, Fd is the force due to atmospheric drag and Ft is the force due
to thrusters. ac is the gravitational acceleration due to the central body and ap is the acceleration due to the
sum of accelerations from all other bodies. ue is the thruster exhaust velocity. mf is the fuel mass and md

is the dry mass.

The rotational dynamics and kinematics are

Iω̇ + ω × Iω = T (9-5)

q̇ = f(q, ω) (9-6)

The rotational kinematics are represented by quaternions.

9.2 Disturbance Model

The disturbances of interest are solar pressure and atmospheric drag. The latter is only important near
planets with atmospheres. The spacecraft surface is represented by a triangle mesh. Each mesh element is
represented by 3 vertices a normal and the following properties

1. drag coefficient, CD

2. specular reflection coefficient, ρs

3. diffuse reflection coefficient, ρd

4. absorption coefficient, ρa

5. transmissivity ρt

CD is between 0 for no drag and 4 for when the surface perfectly reflects incoming particles.

The drag is

Fd = −1
2
ρCdAn

T vv (9-7)

where n is the outward unit normal, v is the velocity in the body frame and A is the area of the plate. The
outward normal is

n =
(v1 − v3)× (v2 − v3)
|(v1 − v3)× (v2 − v3)|

(9-8)

Solar pressure is the dominant disturbance on a spacecraft in geosynchronous orbit. Solar pressure is due to
the force of photons on the surfaces of the spacecraft. A photon striking a surface can do one of four things:
it can be absorbed, it can reflect specularly (meaning at the same angle with respect to the surface normal
that it hit), it can reflect diffusely (meaning at any angle), or it can pass through the surface. Photons that are
absorbed must either be transferred somewhere else (through heat conduction or as electricity in the case of
a solar array) or be remitted locally. If the latter happens, the photon must be lumped in with the diffusely
re-emitted photons. In terms of fractions of the incoming photons, the following is true for a surface

1 = ρa + ρs + ρd + ρt (9-9)

22

Princeton Satellite Systems 9 SIMULATION MODELS

where ρ stands for the fraction of photons that are absorbed, specularly reflected, diffusely reflected or
transmitted.

The solar pressure force for a surface with only one side seeing free space is

F = −SAsTn(2(ρss
Tn+ ρd/3)n+ (ρa + ρd)s) (9-10)

where s is the Sun vector, n is the unit normal to the surface, A is the area of the surface and S is the solar
flux in N/m2.

For thin membranes (such as solar sails or solar arrays) we can account for front and back simultaneously.
Each side of the membrane, front and back, has its own emissivity (ε).

In steady state the incoming absorbed solar flux must equal the outgoing re-emitted flux, which follows
Boltzmann’s law for thermal radiation. Assuming that the front and back temperatures of the object are the
same (Ts) then we can write

ρaP = σ
(
εfT

4
s + εbT

4
s

)
(9-11)

where P is the incoming solar flux, P = Φ cos(θ), and σ is Boltzmann’s constant. We can solve for the
equilibrium temperature as

Ts =

(
ρaP

σ(εf + εb)

)1/4

(9-12)

The re-emitted fluxes per unit area for the front and back of the membrane are

Φf =
εfρaP

εf + εb
(9-13)

and
Φb =

εbρaP

εf + εb
(9-14)

which are independent of temperature. The remaining outgoing fluxes accounting for the specular and
diffuse reflected portions of the solar flux are

Φs = ρsP (9-15)

Φd = ρdP (9-16)

From the conservation of energy we know that these four outgoing fluxes must equal the incoming flux. The
total force exerted is

F = cos θ (fs + fd + ff + fb) (9-17)

and the normalized force contributions due to each flux are

fs = −2 cos θΦsn̂ (9-18)

fd = −Φd

(
2
3
n̂+ ŝ

)
ff = −2

3
Φf n̂+ Φf ŝ (9-19)

fb =
2
3

Φbn̂+ Φbŝ

23

Princeton Satellite Systems 9 SIMULATION MODELS

Combining terms we get the final form of the thermal/optical force model.

F = −pA cos θ

(
2

[
ρs cos(θ) +

1
3

(
ρd + ρa

εf − εb
εf + εb

)]
n̂+ [ρd + ρa] ŝ

)
(9-20)

If the surface does not have a back set εf equal to εb. The resulting equation is the conventional single sided
surface model. The spacecraft will be subdivided into triangles. Each triangle will have different surface
properties which will allow the disturbance model to handle a wide variety of spacecraft.

The pulse widths are decremented by the simulation time step after the force and torque have been applied
to the spacecraft.

9.3 Gravity Model

9.3.1 Point Mass Model

The gravity model assumes a point mass model of the center and a perturbation model for all additional
bodies. Any body available in the ephemeris model can be added.

The point mass model is
a = −µ r

|r|3
(9-21)

where r is the vector from the central body to the spacecraft.

The perturbation model is

a = −G
∑

mj

(
dj

|dj |3
+

ρj

|ρj |3

)
(9-22)

where d is the vector from the spacecraft to the secondary body and ρ is the vector from the central body to
the secondary body, i.e. ρ = r + d.

The model uses the SPICE library for the planetary ephemeris. The model can be used in the ECI or ecliptic
frames.

9.3.2 Spherical Harmonic Model

The point mass gravity field for the central body can be replaced by a spherical harmonic gravity model.
There are many ways to deal with asymmetries in planets. One would be to model the planet as a set of
point masses contained within the surface of the planet. The second is to expand the gravitational potential
in a spherical harmonic expansion and compute the gravity forces from the gradient of the potential. Other
expansions could also be used.

The spherical harmonic expansion method works as follows. Define the perturbing gravitational potential
of a planet as

V = −µ
r

∞∑
n=2

[(
a

r

)n ∞∑
m=0

(Sn,m sinmλ+ Cn,m cosmλ)Pn,m(sinφ)

]
(9-23)

defined in the planet fixed frame. a is the radius of the planet.

24

Princeton Satellite Systems 9 SIMULATION MODELS

If we define i, j, k as unit vectors along the planetary x, y and z axes, the gravitational acceleration can be
found as follows

∂V

∂r
= −

∞∑
n=2

n∑
m=0

∂Vn,m

∂r
(9-24)

and

∂Vn,m

∂r
=

µ

r2

(
a

r

)n

[−r(vHn,m +Bn,m) + iDn,m − jEn,m + kHn,m] (9-25)

Bn,m = (Cn,mĈm + Sn,mŜm)(n+m+ 1)Pm
n (9-26)

En,m = −m(Cn,mŜm−1 − Sn,mĈm−1)
Dn,m = m(Cn,mĈm−1 + Sn,mŜm−1)
Hn,m = (Cn,mĈm + Sn,mŜm)Pm+1

n

Ĉm = Ĉ1Ĉm−1 − Ŝ1Ŝm−1

Ŝm = Ŝ1Ĉm−1 + Ĉ1Ŝm−1

The starting conditions are
Ĉ0 = 1 Ŝ0 = 0
Ĉ1 = x

r Ŝ1 = y
r

(9-27)

The derivatives of the Legendre Polynomials are

P 0
n =

1
n

[
(2n− 1)vP 0

n−1 − (n− 1)P 0
n−2

]
(9-28)

Pm
n = Pm

n−2 + (2n− 1)Pm−1
n−1 (9-29)

P 0
0 = 1

P 0
1 =

z

r
≡ v

P 1
0 = 0
P 1

1 = 1

This kind of harmonic expansion is the standard method for modeling a planets gravitational field. Harmonic
models exist for the Earth, Moon, Mars and other planets. A harmonic model is convenient because it gives
an idea of how much influence higher order terms have on the overall force.

9.4 Camera Model

The camera model is a pinhole camera has a single ray per point on the target and that ray maps to a point
on the focal plane. A point P (X,Y, Z) is mapped to the imaging plane by the relationships

u =
fX

Z
(9-30)

v =
fY

Z
(9-31)

where u and v are coordinates in the focal plane, f is the focal length and Z is the distance from the pinhole
to the point along the axis normal to the focal plane. This assumes that the Z-axis of the coordinate frame
X,Y, Z is aligned with the boresight of the camera.

Two models are provided. The first is the imager.cc model which computes the centroids of

25

Princeton Satellite Systems 9 SIMULATION MODELS

1. Stars

2. Planets

3. Spacecraft

In addition it computes the location of landmarks on planets and points on spacecraft. These are output as a
matrix for processing by the estimation software. This bypasses processing of the images to facilitate testing
of the estimators. The centroids of the planets are their centers as used by the orbit dynamics model.

The second model is the camera.cc. This creates a synthetic scene using the OpenGL pinhole cam-
era model. The frame can be processed by image processing to compute the pixel plane locations of the
centroids.

9.5 IMU Model

The gyro model is

ωm = ω + c+ b+ νω (9-32)

ḃ = −1
τ
b+ νb (9-33)

where c is a constant error, b is a bias and νω is output noise. νb is the random walk noise. τ is the time
constant for the bias. This would cause the bias to decay with time if not driven by white noise. The
accelerometer model is

ẍm = ẍ+ c+ b+ νẍ (9-34)

ḃ = −1
τ
b+ νb (9-35)

where c is a constant error, b is a bias and νω is output noise. νb is the random walk noise.

9.6 Ranging Model

The ranging model returns range and range-rate between a planet fixed point and the spacecraft.

ρ =
√
r2x + r2y + r2z (9-36)

ρ̇ =
vT r

ρ
(9-37)

26

Princeton Satellite Systems 9 SIMULATION MODELS

9.7 State Sensor Model

The state sensor state_sensor.cc is useful for testing purposes. It returns the vehicle rigid-body state
in a single vector.

x =

rx
ry
rz
vx

vy

vz

qs
qx
qy
qz
ωx

ωy

ωz

(9-38)

The zero quaternion has qs = 1.

9.8 GPS Model

The GPS model returns range and range rate between all visible GPS satellites. It also includes their Carte-
sian state vector. The GPS satellite positions propagated assuming that their orbits are circular. Line of
sight is compute for each satellite with a selectable angle for blocking the signal. This model is not a highly
accurate model of the GPS constellation but is sufficient for software testing. The GPS constellation in the
model is shown in Figure 9-1. The model also accounts for the direction of the GPS constellation. Thus
when a satellite is above the constellation altitude it will only see satellites that are on the other side of the
earth but not blocked by the earth.

Figure 9-1. GPS model constellation

−4
−2

0
2

4

x 10
4

−4

−2

0

2

4

x 10
4

−4

−2

0

2

4

x 10
4

X (km)

GPS Satellites at JD = 2455405.40 in the EF frame

Y (km)

Z
 (

km
)

27

Princeton Satellite Systems 9 SIMULATION MODELS

9.9 Intersatellite Link Model

The Intersatellite Link (ISL) model returns range and range rate between the target satellite and the core
satellite. It also includes the target satellite Cartesian state vector.

9.10 Radar Model
Figure 9-2. Radar frame of reference

Target

Escort

Radar Frame

z

x

y

range, range rate

Position of radar

Elevation

Azimuth

Center of the Earth

re

rt

c

If the transformation matrix from ECI to the escort frame is meb and the transformation matrix from the
body to the radar frame is meb then the relative position vector is

r = mbr (meb(rt − re)− c) (9-39)

where c is the vector from the spacecraft center-of-mass to the origin of the radar frame. The gravitational
equations are referenced to the center-of-mass of each spacecraft. The relative rate vector is

ṙ = mbr (ṁeb(rt − re) +meb(ṙt − ṙe)) (9-40)

if we assume that c and mbr are fixed.

Range rate is determined from the Doppler shift of the signal so it is a separate measurement from range.
Azimuth and elevation are from the measured angles of the radar beam. Their rates are not directly measured.
If α is azimuth and β is elevation then

α = tan−1 ry
rx

(9-41)

β = sin−1 rz
ρ

(9-42)

where ρ = |r|.

28

Princeton Satellite Systems 9 SIMULATION MODELS

9.11 Propulsion Model

The propulsion model allows an array of thrusters to be modeled with independent thrust parameters. A
single tank blowdown system is assumed. The fuel pressure for the unregulated blowdown system is

P =
mHeRHeT

V −mf/ρf
(9-43)

where mHe and RHe are the mass and gas constant of the Helium pressurant, T is the fuel temperature, V is
the tank volume, and mf and ρf are the mass and density of the hydrazine fuel.

The thrust commands are pulse widths to each thruster. Any pulse width commands less than the thruster
minimum impulse bits are ignored. The remaining commands are scaled if the pulse width is less than the
simulation time step, so that the correct total force is applied to the spacecraft.

k =

[
∆tc/∆tsim, ∆tc < ∆tsim
1.0, otherwise

(9-44)

The thrust of each thruster is computed from a coefficient a0 and the ratio of the pressure to the thruster
nominal pressure.

T = a0k
P

P0
(9-45)

The mass flow is computed from the thrust and exhaust velocity of each thruster.

ṁ = −
∑ Ti

uei

(9-46)

The total force is a sum of the thrust times each thruster’s unit vector. The torque is the cross product of the
force with the vector to the spacecraft center of mass.

F =
∑
Tiûi (9-47)

T =
∑

(~r − rCM)× F (9-48)

9.12 Gimbal Model

The gimbal model is a first order model in which the input command is commanded rate

θ̇ = ωc (9-49)

The gimbals may be stacked on top of other gimbals. The model does not include dynamical effects of
gimbal motion. This is a reasonable simplification because the camera assembly has much lower inertia
than the core spacecraft.

29

	Summary
	Simulation Components
	Building from an Installer
	Building from SVN
	Architecture of the Simulation
	APIs
	Demonstration
	Introduction
	Simulation Setup File
	Control Deck
	VCI File
	User Operations
	Editing

	DSimManager
	Simulation Models
	Spacecraft Dynamics
	Disturbance Model
	Gravity Model
	Camera Model
	IMU Model
	Ranging Model
	State Sensor Model
	GPS Model
	Intersatellite Link Model
	Radar Model
	Propulsion Model
	Gimbal Model

