Critical Orbit Control Issues for Fractionated Spacecraft

Joseph Mueller
jmueller@psatellite.com

Princeton Satellite Systems
Agenda

• **Issues**
 – What are the important issues related to orbit control?

• **Experience**
 – What experience do we have in these areas?

• **Examples**
 – Passive collision avoidance with “safe formations”
 – The effects of navigation uncertainty
“Engineers like to solve problems.
If there are no problems handily available, they will create their own problems.”

– Scott Adams
Motivation

• This fractionated paradigm is motivated by the ideals of:
 – Flexibility
 – Robustness
 – Economy

• While the paradigm itself is a solution to many problems, it also brings new challenges.

• Success depends on several technologies:
 – Distribution of power and actuation
 – Docking and resource transfer systems
 – Relative navigation
 – **Orbit control**
Orbit Control Issues

Now that we’ve broken it into all of these pieces...
How do we control the orbit?

- We must consider **ALL** aspects of orbit control:
 - **Collision Avoidance**
 - **Relative orbit control**
 - Formation Flying
 - Cluster-Maintenance
 - **Absolute station-keeping**
 - About 55 m/s annual delta-v for GEO
 - Fewer, larger maneuvers
 - How to do this with a distributed system?

Delta-V Requirement?
Orbit Control Issues

Requirements Flow:

- Relative Orbit Control
 - Formation Flying
 - Cluster-Maintenance
Orbit Control Issues

Requirements Flow:

- Relative Orbit Control
 - Formation Flying
 - Cluster-Maintenance
Orbit Control Issues

Requirements Flow:

Must Close the Design Loop to Ensure Feasibility
Important Questions:

• What is the propulsion capability at each node?
 – Fully distributed vs. Partially distributed with a fuel tug

• What are the tracking requirements for the mission?
 – Precise formation flying vs. Loose cluster control

• What are the range constraints?
 – Range limits imposed by communication systems

• What are the primary differential disturbances?
 – Earth oblateness, atmospheric drag, solar pressure

• What is the relative navigation uncertainty?
Orbit Control Issues

Some Specifics:

- Even loosely controlled clusters must combat secular drift
 - Differential disturbances, Earth oblateness (J2), Navigation error

- Heterogeneous spacecraft bring differential disturbances
 - Atmospheric drag (LEO)
 - Solar pressure
 - Geometry and Attitude

- Effects of Earth oblateness (J2) depend on the orbit
 - Creates secular drift, linear with time
 - Some effects can be neutralized with choice of relative orbit

- Navigation error
 - Leads to an error in semi-major axis
 - Energy differential → Secular drift
Experience

1999

• **TeamAgent Formation Flying**
 – Phase 1-2 SBIR with AFRL Kirtland, TechSat 21

• **Autonomous Rendezvous and Docking**
 – Phase 1-2 SBIR with AFRL Kirtland

• **Autonomous Control of Formation Flying Spacecraft**
 – 3 Year CETDP with MIT, Cornell

• **Integrated Multi-Range Rendezvous**
 – Phase 1 SBIR with NASA Marshall

• **Defensive Counter Space - Escort Satellites**
 – Phase 2 SBIR with AFRL Kirtland

• **Decentralized Formation Flying Control System**
 – Phase 1-2 SBIR with NASA Goddard

• **PRISMA**
 – CRADA with Swedish Space Corporation, Launch 2008

Present
Experience

• We focus on **practical implementation** of formation flying technology:
 – How to achieve autonomy with efficiency and robustness?
 – How to scale effectively to large clusters?
 – How to deal with disturbances and hardware constraints?
 – How to develop a fault management plan for the cluster?

• **Capabilities:**
 – Real-time fuel optimal maneuver planning
 – Model Predictive Control
 – Decentralized Guidance and Control Methods
 – Scalable Architectures
 – Autonomous Cluster Management
 – Collision monitoring using set membership theory
 – Safe guidance methods for collision avoidance (PRISMA)
• Decentralized Formation Flying
 – Phase 1-2 SBIR
 – NASA Goddard

• Scope and Objectives:
 – Guidance and Control
 – Scalable to large systems
 – Extensible to different orbit regimes and spacecraft designs
 – Autonomous Initialization
 – Autonomous Reconfiguration

• Fractionation:
 – Hierarchical team framework
 – MANTA middleware
• PRISMA Rendezvous Robots
 – CRADA
 – Swedish Space Corporation (SSC)
 – 2 Spacecraft in LEO
 – Launch 2008
 – GNC Demonstrations:
 • Formation Flying
 • Rendezvous
 • Proximity Operations

• PSS Developing Algorithms for:
 – Safe Orbit Guidance
 – Collision Monitoring
Safe Orbit Guidance

- Passive collision avoidance
 - Minimum level of effort for relative orbit control

- 2 Guidance Modes
 - Separation
 - Nominal

- Avoidance Region
 - 2x1x1 Ellipsoid
Safe Orbit Guidance

Objectives

• Separation Guidance
 – Single burn
 – Exit region by time T
 – Monotonic separation
 – Passively safe - never reenter region

• Nominal Guidance
 – Achieve and maintain safe ellipse
 – Fuel efficient
Safe Orbit Guidance

• Safe Ellipse:
 – T-Periodic, or passively stable trajectory
 – Lies outside a “nominal boundary”
 – Coordinated in-plane and cross-track motion
 – Prevents collisions while allowing along-track drift

• Fractionated Missions?
 – Can be applied to large clusters, but increases the maximum range
 – A challenge is to combine safe orbit designs with mission objectives

Orbit-Plane
Along-Track
Safe Orbit Guidance

Drifting Safe Ellipse
Drift due to Navigation Error
Safe Orbit Guidance

Deformation
Due to J2
42 Day Period
LEO

- Along-Track Drift
- Radial Growth
- In-plane / Cross-track Phase Shift

1 Week Trace:

3 Week Animation:
Navigation Error

• Common to all missions, all orbits

• Significant impact on performance and safety
 – Annual Delta-v
 – Collision Probability

• How does it impact cluster-maintenance?
 – Monte Carlo Analysis

• Model predictive control
 – Maneuver planned when position error exceeds deadband
 – Parameters:
 • Deadband
 • Maneuver duration
Navigation Error

- **Parameters of the Monte Carlo Simulation**
 - No disturbances, Zero Eccentricity
 - Each case is simulated for 2 weeks
 - Random noise
 - Results are **averaged** from 150 runs

- **Altitudes**
 - LEO
 - GEO

- **Deadband**
 - 25 m
 - 50 m
 - 100 m

- **Noise Levels**
 - Position: 1.0 to 10 cm
 - Velocity: 0.5 to 5 mm/s

- **Maneuver Duration**
 - 30 min
 - 60 min
 - 120 min

(CDGPS Level)
Navigation Error

Annual Delta-V (m/s)

LEO
Navigation Error

Annual Delta-V (m/s)

GEO
% Time Outside Deadband

LEO
Navigation Error

% Time Outside Deadband

GEO
Navigation Error

Trajectory
- LEO
 - Low Noise
 - High Noise

Deadband
Navigation Error

Trajectory

GEO

Deadband

Deadband

Low Noise

High Noise
Concluding Remarks

• Orbit Control for Fractionated Spacecraft
 – Relative Station-Keeping
 – Absolute Station-Keeping
 – Collision Avoidance

• Important questions:
 – How to perform large-scale station-keeping maneuvers with whole cluster?
 – How to best distribute propulsive capabilities to cluster elements?

• Propulsion Requirements
 – Derived from Mission Req’s and Spacecraft Design
 – Even “loose” clusters will require moderate delta-v capability
 – Are these requirements feasible for fractionated missions?
Contact Information

Joe Mueller
763-560-9613
jmueller@psatellite.com

Mike Paluszek
609-279-9606
map@psatellite.com

Company Website:
http://www.psatellite.com/

Presentation:
http://www.psatellite.com/papers/