

Monitoring and Analysis of Multiple Agent Systems

Stephanie J. Thomas, Joseph B. Mueller, Christopher G. Harvey, Derek M. Surka

Princeton Satellite Systems
33 Witherspoon St., Princeton, NJ 08542

{sjthomas, jmueller, charvey, dmsurka}@psatellite.com
http://www.psatellite.com

Abstract. As agent-based software is more extensively deployed for the control
of real-time systems, it is imperative to have tools available for the monitoring
and analysis of these systems. Princeton Satellite Systems’ (PSS’) current
ObjectAgent tools enable users to easily create and initialize agents in a multiple
spacecraft system. Advanced tools do not presently exist, however, for the mon-
itoring and commanding of agent actions in real-time. To address this issue, PSS
is developing the AgentCommand Control and Monitoring System for distrib-
uted agent applications under NASA GSFC SBIR funding. A set of user-config-
urable Matlab software tools has been created that enables users to easily record
and post-process the communications of agent-based, multiple satellite systems.
Future work will build upon these Matlab playback and analysis tools to enable
users to perform real-time commanding and analysis of distributed agent sys-
tems.

1. Introduction

As agent-based software is more extensively deployed for the control of real-time sys-
tems, it is imperative to have tools available for the monitoring and analysis of these
systems. Princeton Satellite Systems is developing the AgentCommand Control and
Monitoring System to address this issue for distributed agent applications under NASA
GSFC SBIR funding.

AgentCommand is originally being developed for use with the ObjectAgent (OA)
software architecture, and its first application will be on the TeamAgent formation fly-
ing testbed. The ObjectAgent system is an agent-based real-time architecture for dis-
tributed, autonomous control and TeamAgent applies OA to the problem of controlling
multiple cooperative satellites. These systems were originally developed under AFRL
SBIR funding in support of its TechSat 21 satellite mission, a technology demonstra-
tion program that will involve three satellites flying in formation and acting as a “vir-
tual” satellite. The ObjectAgent cluster management software will enable the three
TechSat 21 spacecraft to perform high precision formation flying to form a single vir-
tual instrument.

The current ObjectAgent tools enable users to easily create and initialize agents in
a multiple spacecraft system. Advanced tools do not presently exist, however, for the
monitoring and commanding of agent actions in real-time. Users can either view pre-
determined agent parameters through the provided interface windows or query and

command agents in a predetermined, script-like fashion. Neither of these methods is
capable of providing as robust or as varied human/agent interaction as is necessary to
take full advantage of agent autonomy. Furthermore, neither tool is able to provide an
overall view of the distributed system. It is desirable to have a system that is able to
provide visualization of the interactions among multiple satellites, to summarize the
overall status of the system, and to facilitate ease of fault detection, identification and
recovery. In the future, it will even be desirable to have an environment in which
agents and humans can ask questions of each other and can work together to solve
problems, if not as peers then at least as master and student.

There are three specific areas of human/agent interaction that must be improved:
1. Human understanding of agent actions. The workings of the agent system must be

made more transparent to both users and developers.
2. Human direction of agent actions. Humans must be able to easily and accurately

command agent actions.
3. Human/agent collaboration. In the short term, interest lies in being able to control

and understand agent actions, but in the long term, people and agents will work
together to solve problems, just as people work together as teams now. Tools must
be created to enable this collaboration.

The currently funded AgentCommand research only addresses the first two areas with
human understanding of agent actions the primary research area. The work to date has
focussed on a set of user configurable software tools that will enable users to monitor
agent-based, multiple satellite systems in Matlab.

The first part of this paper describes the software tools that have been developed
under the GSFC SBIR Phase I funding. This software includes:

• Agents to record important information generated by both Matlab and C++ OA
agent simulations;

• A Matlab-based playback tool to replay agent-based simulations, either Matlab-
or C++-based, including simulation outputs and agent activity;

• A basic set of tools to post-process and analyze these simulations; and

• An integrated agent development environment in Matlab that will enable predic-
tive agent-network analysis tools to be incorporated in the future.

The second part of the paper describes plans for Phase II development and beyond.
This work will build upon the current Matlab playback and analysis tools to enable
users to perform real-time analysis of distributed agent systems. The resulting com-
manding tool will enable users to send messages/commands to C++ OA agents in real-
time. Particular emphasis will be placed on the visualization of these systems. PSS will
also begin research and development of tools for the analysis and possible prediction
of multi-agent behavior prior to deployment or simulation.

2. Background on ObjectAgent

The ObjectAgent Software Architecture uses agents to implement all software func-
tionality, instead of as a top layer only, and this is a key feature that distinguishes
ObjectAgent from other agent architectures. This architecture allows decision-making,

including fault detection and recovery capabilities, to be built in at all levels of the
software. This alleviates the need for extremely intelligent high-level agents and sim-
plifies the software interfaces.

Each agent is multi-threaded and composed of skills. These skills are user-defined
and determine the functionality of the agent. Generally, each skill corresponds to one
basic function, has inputs and outputs, and triggers one or more actions. An agent is
aware of its skills, inputs, and outputs, and built-in skills enable it to hunt for inputs
and automatically configure itself upon launch. In this sense, an ObjectAgent system is
self-organizing.

A fundamental component of ObjectAgent is the flexible messaging architecture
that provides a reliable method for agent-to-agent communication both on a single pro-
cessor and across networks, thus naturally supporting distributed systems. A propri-
etary message format is currently employed with the following characteristics:

• The format is based on simplified natural language;

• Associated with each message is a verb that signifies the type of message;

• Each message has a content field that is parsed and understood by the receiving
agent;

• Each message has an optional data field that can be used to send any type of
information from one agent to another;

• Each message is time-tagged; and

• Each message has fields indicating to and from whom the message is being sent.

This message format can easily be adapted to other industry formats.
During the first phase of development, ObjectAgent was prototyped in Matlab. A

complete, GUI-based environment was developed for the creation, simulation, and
analysis of multi-agent, multi-satellite systems. The use of Matlab enabled the pro-
posed agent architecture to be rapidly prototyped and tested. The current Matlab soft-
ware allows users to quickly verify their agent and algorithm designs prior to
deployment in a real-time environment.

ObjectAgent has been ported to C++ for demonstration on a real-time, distributed
testbed and eventual deployment as part of the Cluster Manager on AFRL’s TechSat 21
distributed satellite mission. Tools are currently being developed to enable OA users to
automatically convert their Matlab agents into C++ agents that can be deployed in real-
time systems. More detailed information about the ObjectAgent software architecture
can be found in [Ref. 2].

3. AgentCommand Software Tools

A primary objective in developing AgentCommand was to enable users to gain better
insight and understanding into the operations of multi-agent systems. To this end,
emphasis was placed on maximizing the user configurability and extensibility of the
software. Many of the tools allow users to choose and create their own plots and views
of the data and to store these preferences as templates. To enable post-simulation anal-
yses, the ability to record all agent messages has been added to both the C++ and Mat-
lab OA architectures.

The new monitoring tools allow the following types of analysis of the recorded
agent communications:

• Search and sort the stored messages,

• Plot statistics of the messages as a function of any subset of agents or time, and

• View plots of message statistics and spacecraft telemetry together in one inte-
grated playback window.

For example, you can create a plot of the message traffic between a set of selected
agents, as shown in the network plot in Figure 3.1.

3.1 Agent Development Environment

The agent development environment has a palette which manages the various develop-
ment windows: AgentDeveloper, HealthMonitor, AgentRelationships, and AgentInter-
faces. This palette presents a clean interface to the user during development.

As part of AgentCommand, an additional development window has been created in
which users can define agent communities and societies. An agent community consists
of all the agents collocated on one processor. An agent society consists of a number of
communities, for example three spacecraft represented by three processors, and all the
agents loaded therein.

This tool incorporates porting the Matlab agents to C++, as some data, such as IP
address, is specific to the agent community which is being ported. In the future, this
tool will also allow users to perform pre-deployment analysis of a defined society.
Users will be able to explore the agent interfaces and estimate message loads, among
other analyses.

Figure 3.1: Network Plot

3.2 Recording Agents

In both the Matlab and C++ architectures, recording of the agent messages was imple-
mented with a special recording agent. This allows message recording with minimal
adjustments to the overall agent architecture. Agents copy both their sent and received
messages to the RecordAgent. This will eventually allow matching of the messages
and analysis of the time lags in the system, but now serves only as a debugging tool.

In systems with multiple processors, which are emulated in the Matlab architecture
as “message centers”, one RecordAgent must be placed on each processor to be moni-
tored. Each RecordAgent only records message traffic on its home processor. The
recorded messages are stored in a text file. Each message is on a separate line and the
fields of the message are comma delimited. The names of the fields are stored in a
header. The file format produced is the same for both C++ and Matlab simulations,
allowing one set of Monitoring tools to be used.

Matlab Recorder

The Matlab RecordAgent has two skills, StartMonitoringSkill and
RecordMessagesSkill, and uses the verb, monitor. The RecordAgent must ask
registered agents to send it copies of their messages, which it does with the message
monitor on. The agents that are sending their copied messages to the RecordAgent
use the following message:

 monitor messages for RecordAgent(StoreMessagesSkill)

This use of messages allows the RecordAgent to be consistent with the ObjectAgent
philosophy that all functionality is implemented by agents and all data is transmitted
through messages.

Real-Time C++ Recorder

The Real-Time RecorderAgent has only one skill, RecorderSkill. The RecorderSkill
creates an outgoing socket connection to an application running on an NT workstation.
This application creates a new file to record all of the message data from the Recorder-
Agent.

All C++ agents have an internal flag to indicate whether or not a local Recorder-
Agent is active. When the RecorderAgent is active, all agents send copies of outgoing
messages to the RecorderAgent. This also happens with all incoming messages. When
the RecorderAgent receives one of these carbon copied messages, it composes a TCP/
IP packet with the appropriate fields from the message and sends them to the applica-
tion mentioned above.

3.3 Monitoring Tools

The MonitorWindow, shown in Figure 3.2, is the centerpiece of the Monitoring tools.
It loads recorded messages and allows a user to peruse them and plot various statistics.
Note that on the right the user can decide which agents to include in a plot.

The MonitorWindow is designed to load the text files created by record agents and
to allow user-configurable analysis of the recorded messages. The user can define plots
of the messages and include various agents or processors in each plot. Message proper-
ties can be plotted by time, agent, or processor, also known as the “community”. In
addition to plotting various statistics, the user can also sort and search through the
stored messages. The messages are displayed in two separate categories: those
recorded while being sent, and those recorded upon receipt.

Many possible combinations exist for plot type, grouping, and variable, and these
choices are left up to the user. Currently, the allowed plot types are pie chart, grouped
bar plot, stacked bar plot, stair plot, and a special network plot (see Figure 3.1 on page
4). The variables will include all message fields but for now are verb, to agent, from
agent, time tag, and messageCenterPath.

The search capability in MonitorWindow allows the user to find messages using the
same variables that are currently enabled for plotting. The other message fields, includ-
ing the values of the data attached to messages, will be added in future versions of the
MonitorWindow tool. Once the data field has been added users will also be able to plot
the values of the data passed between various agents, as the plots are generated using
the search function.

Up to four criteria can be used in a search. Each criteria can be multi-valued. For
example, the search to find all the messages to or from ClusterHealthMonitor with
timetags between 10 and 20 involves three criteria, with the third criteria, timetag,
being multi-valued.

Figure 3.2: Monitor Window

Results

In the OA Tutorial [Ref. 4], a PlottingAgent is collecting the time from a DataAgent.
To learn about the fault detection system, the user fails the DataAgent to see how the
new agent MyNewAgent takes over the task of providing the time to PlottingAgent.
Consider the messages generated from this tutorial example when a RecordAgent is
added. Messages from DataAgent are forcibly cut off using the FailCommand feature
built into OA. This can be viewed in Figure 3.3 produced by the MonitorWindow.

This plot was created using the “from” variable. It is not possible to plot messages
just by “Agent”, as each message is associated with two agents, both a source and a
destination. These plots elucidate the agent behavior during the tutorial simulation,
especially the switch from DataAgent to MyNewAgent as the source of the time for
PlottingAgent. For example, messages received from DataAgent abruptly end when it
is failed at time step 9. A few time steps later, messages are seen to be regularly
received from MyNewAgent instead.

These stacked bar plots only show the total number of messages being sent and
received by the agents. One message field which is very useful to use in plots is the
message verb. The plot in Figure 3.4 is a good example.

The Tutorial example only deals with one processor. A multiple-spacecraft TechSat
21 example included with OA shows monitoring of multiple processors. A ten minute
simulation was run with the software for two of the four available spacecraft, SC #1
and SC #3. The total message traffic onboard spacecraft #1 is shown in Figure 3.5.
Note the large amount of messages at start-up, which level off after a few minutes.

Figure 3.3: Stacked bar: from

3.4 Telemetry Plotting

In addition to reviewing the agents’ messages, the ability to manipulate the spacecraft
telemetry is also crucial to the agent monitoring functions. The agent behavior must be
related to the performance of the spacecraft. The Plotting Tool, shown in Figure 3.6,

Figure 3.4: Grouped bar plot with verb information

Figure 3.5: Spacecraft #1 Total Messages

was designed to provide a uniform yet flexible way to view the results of the spacecraft
simulations. Both raw and derived data can be visualized with a highly configurable
plotting capability. Three-dimensional variables can be animated. Plotting preferences
are saved in a template.

Templates act as filters on the raw data, changing how it appears to the user. When
a simulation file is loaded into the Plotting Tool, the template is blank. At this point a
user may load a previously defined template, or simply begin working with the tool to
build up a new template. Four types of user preferences are stored in a template:

• Grouped variables

• Excluded variables

• Figures

• Derived data

Each of these categories impacts how the simulation data appears to the user.
In general, the data has three descriptive components to it: variable, satellite, and

element. A given variable may have one or multiple elements, and a unique copy of
each variable exists for each satellite. For a given figure, the user may choose which
variables and which satellites to include in the plot. The user may also define the man-
ner in which these three components are organized within the figure.

Each component may be assigned one of the following four plotting characteristics:
row, column, color, and linestyle. Organizing by row or column causes separate sub-
plots to be created within the figure, while the color and linestyle attributes distinguish
the components within a single plot.

Figure 3.7 provides an example of the type of figures that can be generated with the
Plotting Tool. It shows the relative position and velocity of three spacecraft. The x, y,
and z elements are separated by row, the r and v variables separated by column, and the

Figure 3.6: Plotting Tool

satellites distinguished by linestyle. The figure could be easily generated again in sev-
eral different formats. For each figure created, the title, variables, satellites and all plot-
ting characteristics are stored in the template.

An additional feature of this tool is that it automates the process of deriving new
data from raw simulation telemetry. The two variables plotted in Figure 3.7, “r Hills”
and “v Hills”, were not included in the simulation output — they were derived auto-
matically upon applying the template. In this case, a derivation function was used
which takes the position and velocity of the satellites in the ECI frame as inputs, per-
forms a coordinate transformation, and returns the relative states in the local Hills
frame.

The Plotting Tool also allows users to view animations of any 3-dimensional vari-
ables. Upon choosing a variable to animate, the user may then choose which satellites
to view, the start and stop times of the animation, and the speed.

A key application of the 3-D animation feature is viewing the relative motion of
satellites in a local reference frame. In formation flying, the objective is to control the
relative position and velocity of the satellites such that a particular shape or configura-
tion is maintained. The manner in which these relative states evolve over time can be
viewed nicely through animation. The “r Hills” variable displayed in Figure 3.7 could
also be animated to illustrate this relative motion.

Spacecraft telemetry plots that are defined in the Plotting Tool and saved in a tem-
plate can be viewed in playback alongside agent message analyses from the Monitor-
Window.

Figure 3.7: Plotting Tool Generated Figure

3.5 Simulation Playback

The playback window can be opened from the MonitorWindow. This tool, which will
continue to be useful for post-simulation analysis even after real-time monitoring tools
are developed, allows the recorded simulation to be stepped through using any time
step. The user can select up to nine plots from the MonitorWindow or from the space-
craft telemetry PlottingTool for display in playback. The tool as shown in Figure 3.8
includes two telemetry plots and two plots of agent message data.

The least effective plots to view in Playback from the MonitorWindow are bar plot
with time on the x-axis, as no new information is gained during the playback. However
pie and grouped bar plots, such as those shown, provide additional information about
the message composition in a specific time interval. Network plots are also a good
choice for playback.

The window was designed as a console with the idea that in real-time systems,
operators would be looking at various pre-defined plots in addition to viewing the mes-

Figure 3.8: Playback Window

sage traffic as text. Additionally viewing the plots in one window is logistically easier
than clicking through numerous plot windows.

4. Future Plans

A proposal for Phase II of AgentCommand is currently under consideration. In Phase
II, the prototype monitoring tools would be upgraded from Matlab playback-type mon-
itoring to real-time monitoring. An advanced control center which allows commands to
be sent to the agents in real-time would be fully developed. It is not possible to develop
such a control center in Matlab due to inherent limitations in the Matlab environment.
Lastly, research will be conducted into various types of pre-deployment agent analysis
and verification.

After the Phase II work is complete, AgentCommand will be commercially avail-
able both as part of PSS’ ObjectAgent system and also as a stand-alone product.
Although the commanding and monitoring tools will be developed with ObjectAgent
in mind, interfaces to other agent packages will also be considered. The different
aspects of AgentCommand - post-simulation monitoring, real-time commanding and
monitoring, and pre-deployment analysis of agent societies - may be applicable to var-
ious existing software packages.

The following sections describe the work planned for the Phase II effort.

4.1 Real-Time Commanding and Monitoring

The Matlab tools will be finalized, and the requirements specification completed,
before the transfer to Java real-time tools begins. The following functionality is
expected to be added:

• Match up sent and received messages to determine time delays, which may
require adding a unique identifier to each message.

• Expand plotting and searching to include all messages fields, including the data.

• Add advanced pre-deployment analysis techniques to agent society definition.

• Add user preferences (i.e. different logins) if desired.

The command center will use TCP/IP processes to send commands and receive replies.
The agent dispatcher will have to be modified to handle the case of messages being
sent to the command center.

The command center GUI will consist of a message building window which will
check the grammar and allow data to be attached to the commands, plus some win-
dows to view incoming messages, which may be replies to commands or requests for
information or help by an agent. It is expected that minimally, at the end of Phase II, a
user will be able to command agents to perform tasks or send telemetry and monitor
the results of these commands. Agents must have the capability to respond to com-
manded tasks written into their skills, for example a ReconfigureAgent might have
skills which allow it to respond to the command, “calculate new formation”.

4.2 Demonstrations

Several types of demonstrations will be performed. Some possibilities are listed below.

• PSS OA testbed - this real-time testbed uses the OSE operating system. This will
be the primary demonstration for AgentCommand and will include a detailed for-
mation flying demonstration involving multiple spacecraft.

• Softkernel - this is the emulator for OSE. A demo created in this environment will
be portable and independent of the expensive board systems. This demo is com-
plimentary to using the actual PSS testbed.

• GSFC Formation Flying Testbed - With sufficient time, it may be possible to
incorporate GSFC algorithms into OA agents and to integrate these with the
GSFC testbed. Alternatively, pre-existing algorithms, such as from our CETDP
formation flying contract, may be used.

4.3 Pre-Deployment Analysis of Agents

Research will be a key part of this task. Prototype analysis tools will be developed and
user-tested from the results of study into this area. The pre-deployment analysis would
occur on a user-defined agent society. Examples of analysis that will be considered are
latency predictions, stability analyses, and deadlock prediction.

5. Conclusions

The new prototype tools developed under AgentCommand enable the post-simulation
monitoring and analysis of the ObjectAgent message traffic. These tools are a neces-
sary prerequisite to developing an advanced agent control center; before these tools
were developed, there would have been no insight into the results of commands. The
prototype tools have already proved very useful in debugging and understanding
agent-based software. Taking the time to develop these tools first has the added advan-
tage of providing ideas for desirable pre-deployment analysis.

The next step will be the transition from playback-type analysis to real-time com-
manding and monitoring. Although developing the prototype monitoring tools took
only six months, this next design phase is expected to take two years. The resulting
AgentCommand Control and Monitoring Center will provide a sophisticated interface
to the software agents with advanced visualization techniques.

PSS knows that in order for ObjectAgent to be accepted into mainstream software
applications, it is crucial that users be able to more fully understand the behavior of
agents. The ability to interact with agents in real-time has been a cornerstone of the
envisioned OA architecture. Together, the addition of these commanding and monitor-
ing tools to the real-time version of OA will greatly enhance its applicability to critical
real-time systems.

References

1. Mueller, J. B., D. M. Surka, and B. Udrea, “Agent-Based Control of Multiple Sat-
ellite Formation Flying,” The 6th International Symposium on Artificial Intelli-
gence Robotics and Automation in Space, Montreal, Canada, June 2001.

2. Surka, D. M., M. C. Brito, and C. G. Harvey, “The Real-Time ObjectAgent Soft-
ware Architecture for Distributed Satellite Systems,” 2001 IEEE Aerospace Con-
ference Proceedings, Big Sky, Montana, March 2001.

3. PSS Staff, AgentCommand: A Control Center for Autonomous Distributed Satel-
lite Systems, Phase 1 Final Report, Princeton, NJ, August 17, 2001.

4. PSS Staff, ObjectAgent Tutorial, Version 2.1, Princeton, NJ. Available from http://
www.psatellite.com/product.tpl?sku=10014

	1. Introduction
	2. Background on ObjectAgent
	3. AgentCommand Software Tools
	3.1 Agent Development Environment
	3.2 Recording Agents
	Matlab Recorder
	Real-Time C++ Recorder

	3.3 Monitoring Tools
	Results

	3.4 Telemetry Plotting
	3.5 Simulation Playback

	4. Future Plans
	4.1 Real-Time Commanding and Monitoring
	4.2 Demonstrations
	4.3 Pre-Deployment Analysis of Agents

	5. Conclusions
	References

