EVAssgnC:

---------------------------------------------------------------------------
   Use eigenvector assignment to design a controller. Complex lambdas
   must be in pairs. Their corresponding eigenvectors must also
   be complex. 

   The design matrix, d.
   One column per state.  Each row relates vD to the
   plant matrix. For example, rows 7 and 8 relate column 3 in vD to
   the plant. In this case vD(1,3) relates to state 2 and vD(2,4)
   relates to state 3. vD need not have as many columns as states.

   If the desired vD are eigenvectors then d is the identity matrix
   If the desired vectors are directions in the output then D = c
   If components of v are no concern the corresponding column of D
   should be zero.

   rD gives the rows in D per eigenvalue	 
   Each column is for one eigenvalue
   i.e. column one means that the first three rows of  D relat
   to eigenvalue 1 
---------------------------------------------------------------------------
   Form:
   [k, v] = EVAssgnC( g, lambda, vD, d, rD, w )
---------------------------------------------------------------------------

   ------
   Inputs
   ------
   g               (:)      State space system of type statespace
   lambda          (n)      Desired eigenvalues
   vD              (:,n)    Desired eigenvectors
   d               (:,n)    Design matrix
   rD              (n)      Rows in d per eigenvalue
   w               (:,n)    Weighting vectors

   -------
   Outputs
   -------
   k                        Gain matrix
   v                        Achieved eigenvectors

---------------------------------------------------------------------------

Children:

Common: Math/LSSVD