SteadyS:
-------------------------------------------------------------------------------
Determine the steady state control for the system
.
x = Ax + Bu
y = Cx + Du
given y. If the number of inputs is less than the number of
outputs it computes a weighted least squares fit to y using
the weighting matrix q. If the number of inputs is greater
than the number of outputs it minimizes the function u'ru.
If q is not input it uses the identity matrix.
-------------------------------------------------------------------------------
Form:
[u, x, yC] = SteadyS( a, b, c, d, y, q, r )
-------------------------------------------------------------------------------
------
Inputs
------
a Plant matrix
b Input matrix
c Output matrix
d Feedthrough matrix
y Desired output
q Weighting matrix for y
r Weighting matrix for u
-------
Outputs
-------
u Steady state control
x Steady state state
yC Achievable y if number of outputs > number of controls
-------------------------------------------------------------------------------
Children: