Path: ACPro/ACPointMass
% Simulate the controlled trajectory of a point mass aircraft model. This simulation includes feedback control. The control law is based on feedback linearization, so that the closed loop system approximates a linear system with desirable dynamic properties. State: x = [V;gama;psi;x;y;h;Tbar] -------------------------------------- V true airspeed gama air relative flight path angle psi air relative flight heading angle x East position y North position h altitude Tbar normalized excess thrust Control: u = [Lbar;phi;Tcbar] ------------------------------- Lbar normalized excess lift phi bank angle Tcbar normalized excess thrust command Command: cmd = [h;v;psi;x;y] ------------------------------- h altitude command (m) v velocity command (true airspeed, m/s) psi heading command (rad) x eastward position (m) y northward position (m) -------------------------------------------------------------------------- Form: [x,u,xDot,cmd] = AircraftPointMassCLPSim( x0, cmd, t, data ); -------------------------------------------------------------------------- ------ Inputs ------ x0 (7,1) Initial state vector cmd (3,N) Command vector (only h,v,psi need to be provided) t (1,N) Time vector for integration data Data structure with fields: a Body-frame disturbance accel. (forward,x-track,normal) W Wind speeds (East,North,up) g Gravitatioanl acceleration tau Engine thrust response time ------- Outputs ------- x (7,N) State vector u (3,N) Control input vector xDot (7,N) Time derivative of state vector cmd (5,N) Command vector (all command variables are output) --------------------------------------------------------------------------
ACPro: ACPointMass/AircraftPointMassControl ACPro: ACPointMass/AircraftPointMassRHS Math: Integration/RK4
Back to the ACPro Module page