Path: SC/Dynamics
% Momentum bias spacecraft model Computes the state space description of a momentum bias spacecraft where the internal momentum is fixed. If dT is not input it returns the continuous time plant. If dT is input it returns the discrete time plant. In either case, the plant is linearized about wo. The state vector is [thetax;thetay;thetaz;omegax;omegay;omegaz] Where the state vector is with respect to the rotating frame defined by wo. The outputs are the angles, i.e. the first three elements in the state vector. If h and wo are not in the same direction or inr is not diagonal, dxdt will be nonzero and you will get constant disturbance torques. If only one output is specified it gives the right hand side of the nonlinear dynamical equations of motion. You need to use the kinematics routines to get the nonlinear kinematics equations. -------------------------------------------------------------------------- Form: [a,b,c,d,dxdt] = MBModel(inr,h,wo) [a,b,c,d,dxdt] = MBModel(inr,h,wo,dT) [wDot] = MBModel(inr,h,w,torque) -------------------------------------------------------------------------- ------ Inputs ------ inr (3,3) Inertia matrix h (3,1) Internal momentum vector wo (3,1) Orbit rate vector dT (*,1) Sampling period (1) or torque vector (3) ------- Outputs ------- a (6,6) Plant matrix b (6,3) Input matrix c (3,6) Output matrix d (3,3) Feedthrough matrix dxdt (3,1) Steady state derivative or wDot (3,1) State derivative --------------------------------------------------------------------------
Common: Control/C2DZOH Math: Linear/SkewSymm
Back to the SC Module page